domingo, 27 de septiembre de 2015

La Robótica cuántica

La Robótica Cuántica
El mundo de las comunicaciones y los ordenadores se está revolucionado gracias a la introducción de la mecánica cuántica, pero esta misma herramienta también podría emplearse para desarrollar robots, autómatas y demás agentes que usen la Inteligencia Artificial (IA), según un estudio realizado por investigadores de la Universidad Complutense de Madrid (UCM) y la Universidad de Innsbruck (Austria) que ha sido publicado en la revista Physical Review X.
La mecánica cuántica, concretamente, podría favorecer el aprendizaje (machine learning, en inglés) de esta clase de agentes pudiendo así es poder de forma óptima y más rápida al entorno, elaborando modelos y predicciones muy precisas. Los mismos motores que se aplican, por ejemplo, para conocer la evolución del clima o en el desarrollo de los motores de búsqueda por internet.
Según Miguel A. Martín-Delgado, uno de los investigadores de la UCM que han participado en el estudio, la denominada "inteligencia artificial cuántica" (Quantum AI) podría ser el futuro de la robótica (no en vano, Google ha comenzado a invertir millones de dólares mediante la creación de un laboratorio especializado en colaboración con la NASA):
Construir un modelo es realmente un acto creativo, pero los ordenadores clásicos no son buenos en esto. Ahí es donde entra en juego la computación cuántica. Las ganancias que aporta no son solo Cuantitativas en cuanto a mayor velocidad, también cualitativas, al adaptarse mejor a entornos donde el agente clásico no sobrevive. Es decir, los robots cuánticos son más creativos.

El mercado de la Robótica y las perspectivas del futuro

Robotec
El mercado de la Robótica y las perspectivas del futuro
Las ventas anuales para robots industriales han ido creciendo en Estados Unidos a razón del 25% de acuerdo a estadísticas del año 1981 a 1992. El incremento de ésta tasa se debe a factores muy diversos. En primer lugar, hay más personas en la industria que tienen conocimiento de la tecnología y de su potencial para sus aplicaciones de utilidad. En segundo lugar, la tecnología de la robótica mejorará en los próximos años de manera que hará a los robots más amistosos con el usuario, más fáciles de interconectar con otro hardware y más sencillos de instalar.
En tercer lugar, que crece el mercado, son previsibles economías de escala en la producción de robots para proporcionar una reducción en el precio unitario, lo que haría los proyectos de aplicaciones de robots más fáciles de justificar. En cuarto lugar se espera que el mercado de la robótica sufra una expansión más allá de las grandes empresas, que ha sido el cliente tradicional para ésta tecnología, y llegue a las empresas de tamaño mediano, pequeño y por que no; las microempresas. Estas circunstancias darán un notable incremento en las bases de clientes para los robots.
La robótica es una tecnología con futuro y también para el futuro. Si continúan las tendencias actuales, y si algunos de los estudios de investigación en el laboratorio actualmente en curso se convierten finalmente en una tecnología factible, los robots del futuro serán unidades móviles con uno o más brazos, capacidades de sensores múltiples y con la misma potencia de procesamiento de datos y de cálculo que las grandes computadoras actuales. Serán capaces de responder a ordenes dadas con voz humana. Así mismo serán capaces de recibir instrucciones generales y traducirlas, con el uso de la inteligencia artificial en un conjunto específico de acciones requeridas para llevarlas a cabo. Podrán ver, oír, palpar, aplicar una fuerza media con precisión a un objeto y desplazarse por sus propios medios.
En resumen, los futuros robots tendrían muchos de los atributos de los seres humanos. Es difícil pensar que los robots llegarán a sustituir a los seres humanos en el sentido de la obra de Carel Kapek, Robots Universales de Rossum. Por el contrario, la robótica es una tecnología que solo puede destinarse al beneficio de la humanidad. Sin embargo, como otras tecnologías, hay peligros potenciales implicados y deben establecerse salvaguardas para no permitir su uso pernicioso.
El paso del presente al futuro exigirá mucho trabajo de ingeniería mecánica, ingeniería electrónica, informática, ingeniería industrial, tecnología de materiales, ingenierías de sistemas de fabricación y ciencias sociales. 18. Proyecto quetzalcoatl Introducción
La Sociedad actual se encuentra inmersa en una Revolución Tecnológica, producto de la invención del transistor semiconductor en 1951 ( fecha en la que salió al mercado ). Este acontecimiento ha provocado cambios trascendentales así como radicales en los ámbitos sociales, económicos, y políticos del orbe mundial.
Ésta Revolución da origen a un gran número de ciencias multidiciplinarias; este es el caso de la Robótica. La Robótica es una ciencia que surge a finales de la década de los 50´s, y que a pesar de ser una ciencia relativamente nueva, ha demostrado ser un importante motor para el avance tecnológico en todos los ámbitos ( Industria de manufactura, ciencia, medicina, industria espacial; etc.), lo que genera expectativas muy interesantes para un tiempo no muy lejano.
Sin embargo es en la Industria de Manufactura donde la Robótica encuentra un campo de aplicación muy amplio, su función es la de suplir la mano de obra del Hombre en aquellos trabajos en los que las condiciones no son las óptimas para este ( minas, plantas nucleares, el fondo del mar; etc.), en trabajos muy repetitivos y en inumerables acciones de trabajo.
Debido al alto costo que representa el automatizar y robotizar un proceso de producción, la tendencia actual en Robótica es la investigación de microrobots y robots móviles autónomos con un cierto grado de inteligencia, este último es el campo en el que se basa este proyecto de investigación.
Por lo anteriormente expuesto se explica la necesidad y la importancia de que Institutos de Investigación, Centros Tecnológicos, la Industria Privada en coordinación con las Universidades se den a la tarea de destinar recursos tanto económicos y humanos para aliviar el rezago tecnológico que el país padece.
Cabe hacer mención que este proyecto fue financiado por el Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV). ¿ QUE ES UN ROBOT ?
Un robot puede ser visto en diferentes niveles de sofisticación, depende de la perspectiva con que se mire. Un técnico en mantenimiento puede ver un robot como una colección de componentes mecánicos y electrónicos; por su parte un ingeniero en sistemas puede pensar que un robot es una colección de subsistemas interrelacionados; un programador en cambio, simplemente lo ve como una máquina ha ser programada; por otro lado para un ingeniero de manufactura es una máquina capaz de realizar un tarea específica. En contraste, un científico puede pensar que un robot es un mecanismo el cuál él construye para probar una hipótesis.
Un robot puede ser descompuesto en un conjunto de subsistemas funcionales: procesos, planeación, control, sensores, sistemas eléctricos, y sistemas mecánicos. El subsistema de Software es una parte implícita de los subsistemas de sensores, planeación, y control; que integra todos los subsistemas como un todo.
En la actualidad, muchas de las funciones llevadas acabo por los subsistemas son realizadas manualmente, o de una forma off-line, pero en un futuro las investigaciones en estos campos permitirán la automatización de dichas tareas.
El Subsistema de Procesos incluye las tareas que lleva acabo el robot, el medio ambiente en el cual es colocado, y la interacción entre este y el robot. Este es el dominio de la ingeniería aplicada. Antes de que un robot pueda realizar una tarea, ésta debe ser buscada dentro de una secuencia de pasos que el robot pueda ejecutar. La tarea de búsqueda es llevada acabo por el Subsistema de Planeación, el cuál incluye los modelos de procesos inteligentes, percepción y planeación. En el modelo de procesos, los datos que se obtienen de una variedad de sensores son fusionados (Integración Sensorial) con modelos matemáticos de las tareas para formar un modelo del mundo. Al usar este modelo de mundo, el proceso de percepción selecciona la estrategia para ejecutar la tarea. Estas estrategias son convertidas dentro de los programas de control de el robot durante el proceso de planeación.
Estos programas son ejecutados por el Subsistema de Control; en este subsistema, los comandos de alto nivel son convertidos en referencias para actuadores físicos, los valores retroalimentados son comparados contra estas referencias, y los algoritmos de control estabilizan el movimiento de los elementos físicos.
Al realizar ésta tarea los mecanismos son modelados, el proceso es modelado, la ganancia de lazo cerrado puede ser adaptada, y los valores medidos son utilizados para actualizar los procesos y los modelos de los mecanismos.
Desde el subsistema de control se alimentan las referencias de los actuadores al Subsistema Eléctrico el cuál incluye todos los controles eléctricos de los actuadores. Los actuadores hidráulicos y neumáticos son usualmente manejados por electroválvulas controladas. También, este subsistema contiene computadoras, interfaces, y fuentes de alimentación. Los actuadores manejan los mecanismos en el Subsistema Mecánico para operar en el medio ambiente, esto es, realizar una tarea determinada. Los parámetros dentro del robot y del medio ambiente son monitoreados por el Subsistema de Sensores; ésta información sensórica se utiliza como retroalimentación en las ganancias de lazo cerrado para detectar potencialmente las situaciones peligrosas, para verificar que las tareas se realizan correctamente, y para construir un modelo del mundo.
VEHÍCULOS
La mayoría de los robots usan ya sea ruedas o extremidades para moverse. Estas son usualmente montadas sobre una base para formar un vehículo, también se montan sobre ésta base, el equipo y los accesorios que realizan otras funciones. Los robots más versátiles son los robots "serpentina"; llamados así por que su locomoción se inspira en el movimiento de las serpientes; se pueden utilizar en terrenos subterráneos y de espacios reducidos, donde el hombre no tiene acceso y el medio ambiente no es el más propicio, como en las minas, túneles y ductos.
Algunos robots móviles tienen brazos manipuladores, esto es debido a sus funciones, y por otro lado la problemática de carecer de brazos idóneos; que tienen que ser pequeños, fuertes, eficientes y baratos. Un problema al cuál se enfrentan los diseñadores de robots, es la generación y almacenado de la energía; los cordones restringen el movimiento pero proveen energía ilimitada.
En contraste los robots con libre movimiento son limitados por su cantidad de energía que puedan almacenar y requieren de comunicación inalámbrica.
En la medida que los robots sean más sofisticados, serán utilizados en un mayor número de aplicaciones, muchas de las cuáles requieren movilidad. En algunas aplicaciones industriales, la necesidad de movilidad es eliminada por la construcción de células de trabajo alrededor del robot, de ésta manera un robot fijo puede dar servicio a varias máquinas. En estos sistemas de manufactura flexible (SMF) las partes son llevadas de una célula de trabajo a otra por vehículos autómatas. En ocasiones para limitar el movimiento del robot se monta sobre rieles para así llegar hasta las células de trabajo con menos complicaciones.
La movilidad es usualmente llevada acabo mediante ruedas, rieles ó extremidades. Los robots con extremidades pueden andar en terrenos más rugosos que los robot con rodado, pero el problema de control es más complejo. Los robots pueden alcanzar movilidad volando. Algunos se deslizan ligeramente sobre al tierra sobre conductos de aire; otros usan levitación magnética, para lo que se requieren superficies especialmente preparadas.
Los robots diseñados para usos en el espacio exterior no son afectados por la gravedad; se elimina el problema de levitación, pero se incrementa el problema del control y la estabilidad.
VEHÍCULOS DE RODADO
Mientras la gente y la mayoría de los animales se desplaza sobre extremidades, la mayoría de las máquinas móviles utilizan ruedas. La ruedas son más simples de controlar, tienen pocos problemas de estabilidad, usan menos energía por unidad de distancia de movimiento y son más veloces que las extremidades. La estabilidad se mantiene al fijar el centro de gravedad de el vehículo en triangulación de los puntos que tocan tierra. Sin embargo, las ruedas solamente pueden utilizarse sobre terrenos relativamente lisos y sólidos. Si se quiere utilizar el robot en terrenos rugosos las ruedas tienen que tener un tamaño mayor que los obstáculos encontrados.
El arreglo más familiar para las ruedas de un vehículo es el utilizado por los automóviles. Cuatro ruedas son colocadas en las esquinas de un rectángulo. La mayoría de estos vehículos tiene maniobrabilidad limitada debido a que tienen que avanzar para poder dar vuelta. También se requiere de un sistema de suspensión para asegurar que las ruedas estén en contacto con la superficie durante todo el tiempo. Cuando el robot se desplaza en línea recta las cuatro ruedas tienen que girar a la misma velocidad, en cambio al momento de dar vuelta las ruedas interiores giran más lento que las ruedas exteriores.
En un robot móvil, estos requerimientos son alcanzados por un buen diseño mecánico y mediante el control de la velocidad de las ruedas de dirección independiente. Sin embargo las imprecisiones que se presentan para alcanzar una trayectoria definida son causadas por factores mecánicos, deslizamiento de las ruedas, dobleces en los ejes de dirección, y desalineamiento de las ruedas. ¿EN QUE CONSISTE EL PROYECTO QUETZALCÓATL?
OBJETIVOS
  1. Construir el prototipo de un Robot Móvil Autónomo para propósitos didácticos y/o para prueba y verificación de algoritmos de control. Y dejar, con este proyecto de investigación, las bases para próximas mejoras en la optimización del prototipo.
  2. Crear nuevos investigadores que cuenten con experiencia y habilidad en el desarrollo de investigaciones y realización de proyectos de este tipo.
  3. Motivar y crear bases para el desarrollo de más proyectos didácticos y/o aplicados a la industria.
  4. Crear vínculos con otras instituciones de enseñanza superior en el Estado con la Universidad de Guadalajara.
METODOLOGÍA DEL DISEÑO
El proyecto consta básicamente de cuatro etapas; Etapa de Investigación, Etapa de Síntesis Informativa, Etapa de Diseño y Construcción, Etapa de pruebas, calibración y control. A).- Etapa de Investigación.
a) Adquisición de Bibliografía.
b) Búsqueda de las fuentes de información específicas de aquellos elementos que constituyen el prototipo.
c) Investigación de las variables que intervienen en el proceso de control del prototipo.
d) Adquisición y estudio del software para el desarrollo e implementación de los algoritmos de control. B).- Etapa de Síntesis de la Información.

Ésta etapa se basa en la etapa anterior y da como resultado una serie de elementos que son necesarios para el desarrollo de las siguientes etapas de el proyecto. C).- Etapa de Diseño y Construcción.
En ésta etapa se aplica toda la información que se recaba y consulta, y que el diseño del prototipo requiere para el cumplimiento de los objetivos planteados anteriormente. En base a estos lineamientos se construyen las piezas que conforman el prototipo, con el material y componentes adecuados. D).- Etapa de Pruebas, Calibración y Control.
Ésta es la etapa final, se adoptan las medidas necesarias para alcanzar los objetivos planteados. Se aplican los algoritmos de control y se prueban hasta conseguir el resultado esperado. DESCRIPCIÓN DEL PROYECTO
El sistema propuesto consta de :
Un Robot Móvil Autónomo.
Se encuentra formado por 2 módulos unidos entre sí mediante una unión mecánica, la locomoción del prototipo se realiza por medio de dos ruedas en cada eslabón, en donde cada una de las que son parte de el primer eslabón cuenta con un actuador ( motorreductor de DC ).
Los servosistemas se componen de un Driver tipo Chopper con control en lazo cerrado de velocidad, para cada actuador en forma independiente.
La alimentación del Robot se realiza mediante módulos de baterías de 12 V y los voltajes se adaptan por medio de convertidores DC-DC.
La información del entorno donde se mueve el Robot se recaba mediante sensores ultrasónicos, los cuales cuentan con una tarjeta de interfaz, la cual pasa dicha información al Cerebro del Robot.
Debido a la complejidad del proyecto, este se descompone en un conjunto de subsistemas que son: - Subsistema Mecánico.
Este subsistema incluye los eslabones, las uniones mecánicas y el módulo que contiene a todo el sistema que permite que las ruedas giren ( ruedas, ejes, coples, baleros). - Subsistema Eléctrico
Este subsistema incluye los servosistemas ( Drivers ), las interfaces entre los sensores, los drivers y la computadora, así como las fuentes de alimentación.

-Subsistemas de Sensores
Ésta incluye los sensores de velocidad de tipo incremental, y sensores ultrasónicos para la exploración del medio ambiente. - Subsistemas de Procesos, Planeación y Control
En este subsistema se encuentran el control de los motores y todas las tareas que realiza el prototipo interiormente y exteriormente al interactuar con el medio ambiente.



La Robótica en la ciencia ficción

La Robótica en la Ciencia Ficción


La robótica cuántica avanza. Los científicos intentan desarrollar instrucciones lógicas suficientemente flexibles para que los ordenadores sean capaces de aprender por si mismos y de esta manera prever con mayor precisión. El 'cuando tu vas yo vengo' será posiblemente el patrón de 'pensamiento' cibernético más usual en el futuro de las relaciones con los humanos, los pilares del próximorobot humanoide se están construyendo. A imagen y semejanza del ser humano.
Investigadores de la Universidad Complutense de Madrid(UCM) y la Universidad de Innsbruck (Austria) publican un trabajo en la revista 'Physical Review X' donde auguran que la computación cuántica abre nuevos desarrollos en el campo de la robótica y en aquellos relacionados con la Inteligencia Artificial(IA). Por primera vez estos científicos han demostrado que las máquinas cuánticas se adaptan a situaciones donde las clásicas no terminan los procesos de aprendizaje y respuesta. Estos investigadores afirman que las máquinas cuánticas pueden responder de forma óptima y más rápida a la hora de actuar frente al entorno que las rodea, publica Zinc.

APUESTA DE GOOGLE Y DE LA NASA

La denominada 'inteligencia artificial cuántica' (Quantum AI) es un ámbito en el que la compañía Google ha comenzado a invertir millones de dólares mediante la creación de un laboratorio especializado en colaboración con la NASA. Ante el tamaño de los patrocinadores, pocos dudan del éxito de las investigaciones.
¿Pero que es eso de la robótica cuántica? Se basa en arquitecturas lógicas que utilizan algoritmos más veloces y flexibles que los habituales, una vuelta de tuerca revolucionaria frente a la lógica del 'if-then'. Los computadores cuánticos de D-Wave Systems para Google, por ejemplo, son sistemas que cuestan en torno a los 10 o 15 millones de dólares, manejan 512 qbits y son 3.600 veces más rápidos que un computador convencional.

APLICACIONES CUÁNTICAS

Esa monstruosa potencia de cálculo se destina al desarrollo de aplicaciones que permitirán a Google servicios de búsqueda más efectivos. La idea es que el sistema sea capaz de adelantarse a los deseos del usuario y ofrecerle información antes incluso de que la demande. Eso puede hacerse a través de la adaptación al usuario, el conocimiento del historial, la posición geográfica, informaciones generadas en el pasado, la acumulación de los patrones de comportamiento anteriores, etcétera. El sistema dotado de un motor cuántico es capaz de entrelazar información con cierta iniciativa, es capaz de predecir más allá de los denominados programas expertos que símplemente analizan la información mediante secuencias lógicas tras respuestas. Algunos científicos apuntan que estos nuevos sistemas cuánticos serán capaces de reconocer la voz y procesar el lenguaje natural por esa flexibilidad 'tan humana'.

ROBOT CON CAPACIDAD DE ADAPTACIÓN

"En el caso de entornos muy exigentes e 'impacientes', el resultado es que el robot cuántico puede adaptarse y sobrevivir, mientras que el robot clásico está destinado a desfallecer", explican G. Davide Paparo y Miguel A. Martín-Delgado, los dos investigadores de la UCM que han participado en el estudio.

APRENDIZAJE ROBÓTICO

Su trabajo teórico se ha centrado en acelerar de forma cuántica uno de los puntos más difíciles de resolver en informática: el aprendizaje robótico (machine learning, en inglés), que se utiliza para elaborar modelos y predicciones muy precisas. Se aplican también para conocer la evolución del clima, las enfermedades o en ese referido desarrollo de los motores de búsqueda por internet. "Construir un modelo es realmente un acto creativo, pero los ordenadores clásicos no son buenos en esto –dice Martin-Delgado–. Ahí es donde entra en juego la computación cuántica. Las ganancias que aporta no son solo cuantitativas en cuanto a mayor velocidad, también cualitativas".

TRUFAR ROBÓTICA CUÁNTICA Y ROBOTS HUMANOIDES

Otros desarrollos en el campo de la robótica humana se acercan más a lo anunciado en la película 'Blade Runner' (vale, sí, aquellos erán robots fruto de la ingeniería genética). Aquellos que visiten el museo de la ciencia de Tokio podrán ver el grado de sofisticación de la humanización de robots (ver vídeo). Trufar la computación cuántica con esos robots de aspecto humano hará que la visión del 2019 de la película protagonizada por Harrison Ford esté más cerca que nunca, aunque todavía queda mucho por hacer.


    



miércoles, 16 de septiembre de 2015

Los primeros Robots

Los primeros Robots

Historia de la Robótica

Historia de la Robótica

Por siglos, el ser humano ha construido máquinas que imitan partes del cuerpo humano. Los antiguos egipcios unieron brazos mecánicos a las estatuas de sus dioses; los griegos construyeron estatuas que operaban con sistemas hidráulicos, los cuales eran utilizados para fascinar a los adoradores de los templos.
El inicio de la robótica actual puede fijarse en la industria textil del siglo XVIII, cuando Joseph Jacquard inventa en 1801 una máquina textil programable mediante tarjetas perforadas. Luego, la Revolución Industrial impulsó el desarrollo de estos agentes mecánicos. Además de esto, durante los siglos XVII y XVIII en Europa fueron construidos muñecos mecánicos muy ingeniosos que tenían algunas características de robots. Jacques de Vauncansos construyó varios músicos de tamaño humano a mediados del siglo XVIII.En 1805, Henri Maillardert construyó una muñeca mecánica que era capaz de hacer dibujos.
La palabra robot se utilizó por primera vez en 1920 en una obra llamada "Los Robots Universales de Rossum", escrita por el dramaturgo checo Karel Capek. Su trama trataba sobre un hombre que fabricó un robot y luego este último mata al hombre. La palabra checa 'Robota' significa servidumbre o trabajado forzado, y cuando se tradujo al ingles se convirtió en el término robot.
Luego, Isaac Asimov comenzó en 1939 a contribuir con varias relaciones referidas a robots y a él se le atribuye el acuñamiento del término Robótica y con el surgen las denomidas "Tres Leyes de Robótica" que son las siguientes:
  1. Un robot no puede actuar contra un ser humano o, mediante la inacción, que un ser humano sufra daños.
  2. Un robot debe de obedecer las ordenes dadas por los seres humanos, salvo que estén en conflictos con la primera ley.
  3. Un robot debe proteger su propia existencia, a no ser que esté en conflicto con las dos primeras leyes.
Son varios los factores que intervienen para que se desarrollaran los primeros robots en la década de los 50's. La investigación en inteligencia artificial desarrolló maneras de emular el procesamiento de información humana con computadoras electrónicas e inventó una variedad de mecanismos para probar sus teorías. Las primeras patentes aparecieron en 1946 con los muy primitivos robots para traslado de maquinaria de Devol. También en ese año aparecen las primeras computadoras.En 1954, Devol diseña el primer robot programable.
En 1960 se introdujo el primer robot "Unimate'', basada en la transferencia de artículos.
En 1961 Un robot Unimate se instaló en la Ford Motors Company para atender una máquina de fundición de troquel.
En 1966 Trallfa, una firma noruega, construyó e instaló un robot de pintura por pulverización.
En 1971 El "Standford Arm'', un pequeño brazo de robot de accionamiento eléctrico, se desarrolló en la Standford University.
En 1978 Se introdujo el robot PUMA para tareas de montaje por Unimation, basándose en diseños obtenidos en un estudio de la General Motors.
Actualmente, el concepto de robótica ha evolucionado hacia los sistemas móviles autónomos, que son aquellos que son capaces de desenvolverse por sí mismos en entornos desconocidos y parcialmente cambiantes sin necesidad de supervisión.
En los setenta, la NASA inicio un programa de cooperación con el Jet Propulsión Laboratory para desarrollar plataformas capaces de explorar terrenos hostiles.
En la actualidad, la robótica se debate entre modelos sumamente ambiciosos, como es el caso del IT, diseñado para expresar emociones, el COG, tambien conocido como el robot de cuatro sentidos, el famoso SOUJOURNER o el LUNAR ROVER, vehículo de turismo con control remotos, y otros mucho mas específicos como el CYPHER, un helicóptero robot de uso militar, el guardia de trafico japonés ANZEN TARO o los robots mascotas de Sony.
En general la historia de la robótica la podemos clasificar en cinco generaciones :las dos primeras, ya alcanzadas en los ochenta, incluían la gestión de tareas repetitivas con autonomía muy limitada. La tercera generación incluiría visión artificial, en lo cual se ha avanzado mucho en los ochenta y noventas. La cuarta incluye movilidad avanzada en exteriores e interiores y la quinta entraría en el dominio de la inteligencia artificial en lo cual se esta trabajando actualmente.

Redes Neuronales

Redes 
Neuronales

son un campo muy importante dentro de la Inteligencia Artificial. Inspirándose en el comportamiento conocido del cerebro humano (principalmente el referido a las neuronas y sus conexiones), trata de crear modelos artificiales que solucionen problemas difíciles de resolver mediante técnicas algorítmicas convencionales. 
UN POCO DE HISTORIA
Desde la década de los 40, en la que nació y comenzó a desarrollarse la informática, el modelo neuronal la ha acompañado. De hecho, la aparición de los computadores digitales y el desarrollo de las teorías modernas acerca del aprendizaje y del procesamiento neuronal se produjeron aproximadamente al mismo tiempo, a finales de los años cuarenta.
Desde entonces hasta nuestros días, la investigación neurofisiológica y el estudio de sistemas neuronales artificiales (ANS, Artificial Neural Systems) han ido de la mano. Sin embargo, los modelos de ANS no se centran en la investigación neurológica, si no que toma conceptos e ideas del campo de las ciencias naturales para aplicarlos a la resolución de problemas pertenecientes a otras ramas de las ciencias y la ingeniería.
Podemos decir que la tecnología ANS incluye modelos inspirados por nuestra comprensión del cerebro, pero que no tienen por qué ajustarse exactamente a los modelos derivados de dicho entendimiento.
Los primeros ejemplos de estos sistemas aparecen al final de la década de los cincuenta. La referencia histórica más corriente es la que alude al trabajo realizado por Frank Rosenblatt en un dispositivo denominado perceptrón. Hay otros ejemplos, tales como el desarrollo del Adaline por el profesor Bernard Widrow.
Durante todos estos años, la tecnología ANS no siempre ha tenido la misma consideración en las ramas de la ingeniería y las ciencias de la computación, más ansiosas de resultados que las ciencias neuronales. A partir de 1969, el pesimismo debido a las limitadas capacidades del perceptrón hizo languidecer este tipo de investigación.
A principios de los 80, por un lado Hopfield y sus conferencias acerca de la memoria autoasociativa y por otro lado la aparición del libro Parallel Distributed Processing (PDP), escrito por Rumelhart y McClelland reactivaron la investigación en el campo de las redes neuronales. Hubo grandes avances que propiciaron el uso comercial en campos tan variados como el diagnóstico de enfermedades, la aproximación de funciones o el reconocimiento de imágenes.
Hoy en día, la tecnología ANS no está en su mejor momento, pero a pesar de ello existen revistas, ciclos de conferencias, etc; que mantienen vías de investigación abiertas.
LA NEURONA BIOLÓGICA
Fue Ramón y Cajal (1888) quién descubrió la estructura celular (neurona) del sistema nervioso. Defendió la teoría de que las neuronas se interconectaban entre sí de forma paralela, y no formando un circuito cerrado como el sistema sanguíneo.
Una neurona consta de un cuerpo celular (soma) de entre 10 y 80 mm, del que surge un denso árbol de ramificaciones (dendritas) y una fibra tubular (axón) de entre 100 mm y un metro.
De alguna forma, una neurona es un procesador de información muy simple:
·Canal de entrada: dendritas.
·Procesador: soma.
·Canal de salida: axón.
Una neurona cerebral puede recibir unas 10.000 entradas y enviar a su vez su salida a varios cientos de neuronas.
La conexión entre neuronas se llama sinapsis. No es una conexión física, si no que hay unos 2 mm de separación. Son conexiones unidireccionales, en la que la transmisión de la información se hace de forma eléctrica en el interior de la neurona y de forma química entre neuronas; gracias a unas sustancias específicas llamadas neurotransmisores.
No todas las neuronas son iguales, existen muchos tipos diferentes según el número de ramificaciones de sus dendritas, la longitud del axón y otros detalles estructurales. Sin embargo, como hemos visto, todas ellas operan con los mismos principios básicos.
MODELO DE NEURONA ARTIFICIAL
El modelo de Rumelhart y McClelland (1986) define un elemento de proceso (EP), o neurona artificial, como un dispositivo que a partir de un conjunto de entradas, xi (i=1...n) o vector x, genera una única salida y.
Esta neurona artificial consta de los siguientes elementos:
·        Conjunto de entradas o vector de entradas x, de n componentes
·Conjunto de pesos sinápticos wij. Representan la interacción entre la neurona presináptica j y la postsináptica i.
·Regla de propagación d(wij,xj(t)): proporciona el potencial postsináptico, hi(t).
·Función de activación ai(t)=f(ai(t-1), hi(t)): proporciona el estado de activación de la neurona en función del estado anterior y del valor postsináptico.
·Función de salida Fi(t): proporciona la salida yi(t), en función del estado de activación.
Las señales de entrada y salida pueden ser señales binarias (0,1 – neuronas de McCulloch y Pitts), bipolares (-1,1), números enteros o continuos, variables borrosas, etc.
La regla de propagación suele ser una suma ponderada del producto escalar del vector de entrada y el vector de pesos:
 También se usa a menudo la distancia euclídea entre ambos vectores:
Existen otro tipo de reglas menos conocidas como la distancia de Voronoi, de Mahalanobis, etc.
La función de activación no suele tener en cuenta el estado anterior de la neurona, sino sólo el potencial hi(t). Suele ser una función determinista y, casi siempre, continua y monótona creciente. Las más comunes son la función signo (+1 si hi(t)>0, -1 en caso contrario), la función semilineal y las funciones sigmoides:
La función de salida suele ser la identidad. En algunos casos es un valor umbral (la neurona no se activa hasta que su estado supera un determinado valor).
Con todo esto, el modelo de neurona queda bastante simplificado
RED NEURONAL ARTIFICIAL:
Una red neuronal artificial (RNA) se puede definir (Hecht – Nielssen 93) como un grafo dirigido con las siguientes restricciones:
  1. Los nodos se llaman elementos de proceso (EP).
  2. Los enlaces se llaman conexiones y funcionan como caminos unidireccionales instantáneos
  3. Cada EP puede tener cualquier número de conexiones.
  4. Todas las conexiones que salgan de un EP deben tener la misma señal.
  5. Los EP pueden tener memoria local.
  6. Cada EP posee una función de transferencia que, en función de las entradas y la memoria local produce una señal de salida y / o altera la memoria local.
  7. Las entradas a la RNA llegan del mundo exterior, mientras que sus salidas son conexiones que abandonan la RNA.

ARQUITECTURA DE LAS RNA

      La arquitectura de una RNA es la estructura o patrón de conexiones de la red. Es conveniente recordar que las conexiones sinápticas son direccionales, es decir, la información sólo se transmite en un sentido.
En general, las neuronas suelen agruparse en unidades estructurales llamadas capas. Dentro de una capa, las neuronas suelen ser del mismo tipo. Se pueden distinguir tres tipos de capas:
·        De entrada: reciben datos o señales procedentes del entorno.
·        De salida: proporcionan la respuesta de la red a los estímulos de la entrada.
·        Ocultas: no reciben ni suministran información al entorno (procesamiento interno de la red).
Generalmente las conexiones se realizan entre neuronas de distintas capas, pero puede haber conexiones intracapa olaterales y conexiones de realimentación que siguen un sentido contrario al de entrada-salida.

APRENDIZAJE DE LAS RNA

 Es el proceso por el que una RNA actualiza los pesos (y, en algunos casos, la arquitectura) con el propósito de que la red pueda llevar a cabo de forma efectiva una tarea determinada.
 Hay tres conceptos fundamentales en el aprendizaje:
 Paradigma de aprendizaje: información de la que dispone la red.
Regla de aprendizaje: principios que gobiernan el aprendizaje.
Algoritmo de aprendizaje: procedimiento numérico de ajuste de los pesos.
Existen dos paradigmas fundamentales de aprendizaje:
Supervisado: la red trata de minimizar un error entre la salida que calcula y la salida deseada (conocida), de modo que la salida calculada termine siendo la deseada.
No supervisado o autoorganizado: la red conoce un conjunto de patrones sin conocer la respuesta deseada. Debe extraer rasgos o agrupar patrones similares.
En cuanto a los algoritmos de aprendizaje, tenemos cuatro tipos:
Minimización del error: reducción del gradiente, retropropagación, etc. La modificación de pesos está orientada a que el error cometido sea mínimo.
 Boltzmann: para redes estocásticas, donde se contemplan parámetros aleatorios.
 Hebb: cuando el disparo de una célula activa otra, el peso de la conexión entre ambas tiende a reforzarse (Ley de Hebb).
 Competitivo: sólo aprenden las neuronas que se acercan más a la salida deseada.
Los algoritmos, y en general el proceso de aprendizaje, son complejos y suelen llevar bastante tiempo computacionalmente hablando. Su ventaja es que una vez ha aprendido, la red puede congelar sus pesos y funcionar en modorecuerdo o ejecución.

miércoles, 9 de septiembre de 2015

Inteligencia Artificial

Inteligencia
Artificial

Él termino "inteligencia artificial" fue acuñado formalmente en 1956 durante la conferencia de Darthmounth, más para entonces ya se había estado trabajando en ello durante cinco años en los cuales se había propuesto muchas definiciones distintas que en ningún caso habían logrado ser aceptadas totalmente por la comunidad investigadora. La IA es una de las disciplinas más nuevas que junto con la genética moderna es el campo en que la mayoría de los científicos " más les gustaría trabajar".
Una de las grandes razones por la cuales se realiza el estudio de la IA es él poder aprender más acerca de nosotros mismos y a diferencia de la psicología y de la filosofía que también centran su estudio de la inteligencia, IA y sus esfuerzos por comprender este fenómeno están encaminados tanto a la construcción de entidades de inteligentes como su comprensión.
El estudio de la inteligencia es una de las disciplinas más antiguas, por más de 2000 años los filósofos no han escatimado esfuerzos por comprender como se ve, recuerda y razona junto con la forma en que estas actividades deberían realizarse. Según John Mc Carthy la inteligencia es la "capacidad que tiene el ser humano de adaptarse eficazmente al cambio de circunstancias mediante el uso de información sobre esos cambios", pero esta definición resulta muy amplia ya que de acuerdo con esta, el sistema inmunológico del cuerpo humanó resultaría inteligente ya que también mediante el uso de información este logra adaptarse al cambio. Otra interesante manera de ilustrar la inteligencia seria recurrir a la teoría social de la mente de Marvin Minsky donde cada mente humana es el resultado del accionar de un comité de mentes de menor poder que conversan entre sí y combinan sus respectivas habilidades con el fin de resolver problemas.
La llegada de las computadoras a principios de los 50, permitió el abordaje sin especulación de estas facultades mentales mediante una autentica disciplina teórica experimental. Es a partir de esto que se encontró que la IA constituye algo mucho más complejo de lo que se pudo llegar a imaginar en principio ya que las ideas modernas que constituyen esta disciplina se caracterizan por su gran riqueza, sutileza e interés; en la actualidad la IA abarca una enorme cantidad de subcampos que van desde áreas de propósito general hasta tareas especificas.
Una de las definiciones que se han dado para describir la IA la sitúa dentro de una disciplina que tiene que ver con las ciencias de la computación que corresponden al esfuerzo por parte de gran cantidad de científicos que durante los últimos treinta años han realizado con el fin de dotar a las computadoras de inteligencia, a partir de esta definición encontramos que una de las técnicas de IA es aquella que se utiliza con el fin de lograr que un determinado programa se comporte de forma inteligente sin pretender tener en cuenta la " forma de razonamiento "empleada para lograr ese comportamiento.
Luego, aquí surge un dilema, ya que según esto cualquier problema resoluble por un computador, sin complicaciones y también como un ser humano podría encuadrarse en el campo de la inteligencia artificial acudiendo solamente a la aplicación de reglas consecutivas al pie de la letra o lo que encontramos con el nombre de Algoritmos dentro del lenguaje de IA; este termino fue acuñado en honor al matemático árabe AL-KWARIZMI que copiló una serie de estos para ser aplicados a diferentes problemas algebraicos.
Cuando se aplican algoritmos a la solución de los problemas aunque no se está actuando inteligentemente si esta siendo eficaz pero los problemas realmente complicados a los que se enfrenta el ser humano son aquellos en los cuales no existe algoritmo conocido así que surgen de reglas que tratan de orientarnos hacia las soluciones llamadas Heurísticas en las cuales nunca nada nos garantiza que la aplicación de una de estas reglas nos acerque a la solución como ocurre con los anteriores.
A partir de estos datos; Farid Fleifel Tapia describe a la IA como: "la rama de la ciencia de la computación que estudia la resolución de problemas no algorítmicos mediante el uso de cualquier técnica de computación disponible, sin tener en cuenta la forma de razonamiento subyacente a los métodos que se apliquen para lograr esa resolución.
Para completar esa definición, algunas definiciones no tan formales emitidas por diferentes investigadores de la IA que consideran otros puntos de vista son:
  • La IA es el arte de crear maquinas con capacidad de realizar funciones que realizadas por personas requieren de inteligencia. ( Kurzweil, 1990)
  • La IA es el estudio de cómo lograr que las computadoras realicen tareas que, por el momento, los humanos hacen mejor. (Rich, Knight, 1991).
  • La IA es la rama de la ciencia de la computación que se ocupa de la automatización de la conducta inteligente. (Lugar y Stubblefied, 1993).
  • La IA es el campo de estudio que se enfoca a la explicación y emulación de la conducta inteligente en función de procesos computacionales. (Schalkoff, 1990).
En la IA se puede observar dos enfoques diferentes:
  1. La IA concebida como el intento por desarrollar una tecnología capaz de proveer al ordenador capacidades de razonamiento similares a los de la inteligencia humana.
  2. La IA en su concepción como investigación relativa a los mecanismos de la inteligencia humana que se emplean en la simulación de validación de teorías.
El primer enfoque se centra en la utilidad y no en el método como veíamos anteriormente con los algoritmos, los temas claves de este enfoque son la representación y gestión de conocimiento, sus autores más representativos son McCrrthy y Minsky.
En el segundo enfoque encontramos que este se orienta a la creación de un sistema artificial capaz de realizar procesos cognitivos humanos haciendo importante ya no la utilidad como el método, los aspectos fundamentales de este enfoque se refieren al aprendizaje y adaptabiliada y sus autores son Newell y Simon de la Carnegie Mellon University.
La IA al tratar de construir maquinas que se comporten aparentemente como seres humanos han dado lugar al surgimiento de dos bloques enfrentados: el enfoque simbólico o top-down, conocido como la IA clásica y el enfoque subsimbolico llamado a veces conexionista.
Los simbólicos simulan directamente las características inteligentes que se pretenden conseguir o imitar y lo mejor que también se tiene a la mano es el hombre; para los constructores de los sistemas expertos resulta fundamental la representación del conocimiento humano donde gracias a estos avances se han encontrado dos tipos de conocimiento: conocimiento acerca del problema particular¨ y ¨conocimiento a cerca de cómo obtener mas conocimiento a partir del que ya tenemos¨. El ejemplo más representativo de esta corriente es el proyecto de Cyc de Douglas B. Lenat sobre un sistema que posee en su memoria millones de hechos interconectados.
Dentro de la otra corriente: la subsimbolica; sus esfuerzos se orientan a la simulación de los elementos de mas bajo nivel dentro de los procesos inteligentes con la esperanza de que estos al combinarse permitan que espontáneamente surja el comportamiento inteligente. Los ejemplos mas claros que trabajan con este tipo de orientación son las redes neuronales y los algoritmos genéticos donde estos sistemas trabajan bajo la autonomía, el aprendizaje y la adaptación, conceptos fuertemente relacionados.
Uno de los grandes seguidores de la IA; Marvin Minsky,ha dado una clasificación para los lenguajes de programación que se utilizan en esta disciplina:
  • ¨Haga ahora¨: Donde el programador surte de instrucciones a la maquina para realizar una tarea determinada donde todo queda especificado excepto quizás él numero de repeticiones.
  • ¨Haga siempre que¨: Aquí se permite escribir un programa que le sirva a la computadora para resolver aquello problemas que el programador no sabe resolver pero conoce que tipo de soluciones se pueden intentar.
  • "De constreñimiento": se escriben programas que definen estructuras y estados que se condicionan y limitan recíprocamente.
Pero Minsky, admite que aún será necesario desarrollar dos tipos de lenguajes más para obtener una IA comparable a la inteligencia humana; y estos podrían ser.
  • "Haga algo que tenga sentido¨: Donde se permite al programa aprender del pasado y en una nueva situación aplicar sus enseñanzas.
  • "Mejórense a sí mismo": Allí se podrá permitir escribir programas que tengan en adelante la capacidad de escribir programas mejores que ellos mismos.
Otro punto desde luego tiene que ver con el tema que aquí estamos tratando es por supuesto el concepto de lo que es creatividad, que a simple vista es algo que no podemos explicar porque es resultado de un don especial pero que los estudios sobre IA han comenzado hacer posible dar explicación satisfactoria: nos dicen que en la medida que se logre escribir programas que exhiban propiedad, en esa misma medida se empezara a explicar la creatividad.
Otra propiedad que se espera ver asociada a la IA es la autoconciencia; que de acuerdo con los resultados de las investigaciones psicológicas hablan por una parte de que como es bien sabido, el pensamiento humano realiza gran cantidad de funciones que no se pueden calificar de conscientes y que por lo tanto la autoconciencia contribuye en cierto sentido a impedir el proceso mental eficiente; pero por otro lado es de gran importancia poder tener conocimiento sobre nuestras propias capacidades y limitaciones siendo esto de gran ayuda para el funcionamiento de la inteligencia tanto de la maquina como del ser humano.
Pero seria imposible tratar de contemplar el tema de la IA sin recurrir a la cuestión de la complejidad; donde el comportamiento inteligente es el resultado de la interacción de muchos elementos y que con seguridad es una de las más valiosas contribuciones al tratar de simular en la maquina los fenómenos intelectuales humanos.
La IA se ha desarrollado como disciplina a partir de la concepción de la inteligencia que se realizo al interior de la psicología y a partir de la cual se elaboraron diferentes categorías.
La inteligencia: Diferentes teorías y definiciones.
En 1904 el ministerio de instrucción publica de Francia pidió al psicólogo francés Alfred Binet y a un grupo de colegas suyos que desarrollan un modo de determinar cuales alumnos de la escuela primaria corrían el riesgo de fracasar para que estos alumnos reciban una atención compensatoria. De sus esfuerzos nacieron las primeras pruebas de inteligencia. Importadas a los EEUU varios años después las pruebas se difundieron ampliamente así como la idea de que existiera algo llamado " inteligencia" que podía medirse de manera objetiva y reducirse a un numero o puntaje llamado " coeficiente intelectual" desde entonces sé a definido la inteligencia en términos de "habilidad para resolver problemas".
I.INTELIGENCIAS MULTIPLES
Un psicólogo de Harvard llamado Howard Garden, señalo que nuestra cultura había definido la inteligencia de manera muy estrecha y propuso en su libro " estructura de la mente", la existencia de por lo menos siete inteligencias básicas:
  • Inteligencia lingüística: capacidad de usar las palabras de modo efectivo ( ya sea hablando, escribiendo, etc). Incluye la habilidad de manipular la sintaxis o escritura del lenguaje, la fonética o los sonidos del lenguaje, la semántica o significado de lenguaje o división, pragmática o los husos prácticos.
  • Inteligencia lógico matemática: capacidad de usar los números de manera efectiva y de razonar adecuadamente ( pensamiento vertical).
  • Inteligencia espacial: la habilidad para percibir la manera exacta del mundo visual-espacial y de ejecutar transformaciones sobre esas percepciones ( decorador, artistas, etc).
  • Inteligencia corporal – kinética: la capacidad para usar el cuerpo para expresar ideas y sentimientos y facilidad en el uso de las propias manos para producir o transformar cosas.
  • Inteligencia musical: capacidad de percibir, discriminar, trasformar y expresar las formas musicales.
  • Inteligencia interpersonal: la capacidad de percibir y establecer distinciones entre los estados de ánimo, las intenciones, motivaciones, sentimientos, de otras personas.
  • Inteligencia intrapersonal: el conocimiento de sí mismo y la habilidad para adaptar las propias maneras de actuar a partir de ese conocimiento.
Más allá de la descripción de las inteligencias y de sus fundamentos teóricos hay ciertos aspectos que convienen destacar:
  • Cada persona posee varios tipos de inteligencias.
  • La mayoría de las personas pueden desarrollar cada inteligencia hasta un nivel adecuado de competencia.
  • Las inteligencias por lo general trabajan juntas de manera compleja, ósea, siempre interactúan entre sí para realizar la mayoría de las tareas se precisan todas las inteligencias aunque en niveles diferentes hay muchas maneras de ser inteligentes en cada categoría.
Inteligencia emocional: existe una dimensión de la inteligencia personal que esta ampliamente mencionada aunque poco explorada en las elaboraciones de Gadner: el papel de las emociones.
Daniel Goleman; toma este desafío y comienza a trabajar sobre el desarrollo de Gadner llevando a un plano más pragmático y centrado en las emociones como foco de la inteligencia.
FUTURO DE LA IA.
El empleo de la IA esta orientado a aquellas profesiones que, ya sea por lo incomodo, peligroso o complicado de su trabajo necesitan apoyo de un experto en la materia. Las ventajas que trae el disponer de un asistente artificial no son mas que las de solucionar los errores y defectos propios del ser humano; es decir, el desarrollo de sistemas expertos que hoy en día se están utilizando con éxito en los campos de la medicina, geología y aeronáutica aunque todavía están poco avanzados en relación con el ideal del producto IA completo.